新闻中心

为了克服恶劣天气,自动驾驶都使用了哪些高科技?

作者:华一汽车科技    来源:www.itas-hk.com    发布时间:2018-08-14 12:05    阅读:

目前,行业内大多数企业已经做到在正常天气状况下的自动驾驶,但针对恶劣天气环境,很多企业仍然在碰到不少难题。这其中,合理规避不同感知传感器的性能瓶颈及传感器的自清洁、冗余设计都是解决方向。
 
迄今为止,大多数ADAS及自动驾驶成功测试都是基于有限的天气条件下进行,为了保证未来正式量产上路可能遭遇的各种恶劣天气环境,汽车主机厂和Tier1、零部件厂需要考虑所有可能的天气条件。
 
比如,在沃尔沃XC60的车主手册中,关于City Safety的限制条款显示,其在大雪或大雨、浓雾、沙尘暴或大暴风雪等情况下功能较差,甚至不能正常工作。同时,由于其使用了激光传感器,手册中也明确注明要保持激光传感器前面的挡风玻璃无冰雪及污垢。
 
在碰撞警示系统方面,手册中明确注明摄像头传感器在黄昏和黎明时看见骑车人的能力有限。当在黑夜及隧道中行驶时,即使路灯点亮,摄像头传感器检测骑车人的能力也将被禁用。
 
此外,当用于扫描车道及探测行人和其他车辆时,强烈的迎面灯光、车道上的反光、道路表面的积雪、肮脏或者不清晰车道线标记等,都可能大大降低摄像头传感器的功能。
 
自动驾驶
 
有数据显示,传统汽车在恶劣天气环境下的事故数量占到22%,大风、雾天、雨雪天等等,都会造成驾驶员的判断错误,这对于自动驾驶系统来说,同样存在。
 
对于严酷天气条件下的自动驾驶,目前行业内主要是两个方向的解决方案,一是车辆判断传感器及道路、天气状况进行驾驶能力的安全决策。比如,在潮湿道路是否减速,雾天条件下传感器能见度下降的判断,雪地及泥水条件下如何保证制动及转向系统的紧急措施的正常运转。
 
第二个方向则是如何保障在恶劣天气条件下,自动驾驶传感器系统的正常工作。目前大家所知道的是,毫米波雷达可以在恶劣的天气条件下正常运转,可以穿透雨雾,但不能想视觉一样提供对复杂环境的细节判断。
 
激光雷达和摄像头则都是容易受到天气条件的干扰。比如激光雷达在大雨及雪天条件下,发出去的激光线束容易被折射而干扰产生噪音,同时造成测距范围的下降。
 
红外夜视+可见光
 
在过去的交通事故统计案例中,事故死亡人数在日落之后上升最快。事实上,绝大多数(四分之三)的行人死亡也发生在夜间。
 
已经得到确认的是,基于红外夜视系统利用红外光波检测物体自然发射的热量差异,可以检测到可见光摄像头、雷达和激光雷达不能识别的物体。至关重要的是,它们在微光和恶劣天气的情况下表现依旧良好。
 
光线变换,是目前视觉的痛点之一。解决重点包括眩光,眩光是一个非常难解决的问题。因为我们是纯被动探测的,所以在眩光的情况下是不会受到任何干扰,夜视系统不受光线变换的影响,可减少驾驶员在城市驾驶时受眩光以及灯光的影响。
 
夜视的另外一大特点就是穿透性强,可以大幅提升恶劣天气下的驾驶视野。比如在中度雾霾的情况下,可见光看到的效果跟人的肉眼差不多,红外线基本上可以达到百米左右的探测距离。
 
传感器自清洁
 
要实现自动驾驶,未来的汽车车身上会搭载越来越多的传感器、摄像头和雷达,而道路上的灰尘、泥水,甚至是冰雪都会严重影响它们的工作。
 
有业内人士透露,考虑毫米波雷达车载测量精准性和安装成本,毫米波雷达厂商和Tier1通常都是建议主机厂将前向毫米波雷达裸露安装在前包围外部,由此在行车中,前向毫米波雷达易被道路飞溅起的泥巴等污物遮挡,导致“失明”。
 
在寒冷的冬天,毫米波雷达表面容易形成结冰,影响信号失准也是一大隐患。为此,前装雷达厂商在毫米波雷达外壳内集成了加热装置,着车时,可以快速升温,解除雷达表面冰冻。
 
传感器自清洁
 
此前,法雷奥就推出了一款everView传感器清洁系统,它是首款应用于激光雷达传感器的全自动清洁设备。
 
everView传感器清洁系统配备了一只可伸缩手臂和几个喷嘴,可自动喷出清洗液并清洗传感器。清洗液可随手臂的延展均匀喷洒在传感器表面,该清洁系统还可以选配除霜功能,以确保车辆在冬季保持最佳性能。
 
而在摄像头方面,大陆集团去年宣布研发出了一款鱼眼摄像头专用的清洗系统,可利用喷射水流去除镜头上的污垢。相比前视摄像头更多安装在车内不同,由于鱼眼摄像头的安装在车身外,它们很容易受到天气的影响,会沾染到冰雪、灰尘等污渍。
 
目前,大陆集团夜视摄像头的清洗系统已经投入批量生产, 360度全景摄像头的清洗系统将于2019年前应用于车辆。
 
此外,水箱内的防冻液可以防止清洗用水在镜头上冻结。加热式清洗系统的供水系统内集成有加热导体,可通过加热清洗用水来防止其结冰。
 
深度学习
 
在今年举行的谷歌I/O开发者大会上,Waymo宣布了自己的深度学习最新成果,在用算法过滤掉噪点(比如减少雪花带来的“信号噪点”)之后,信号收集画面简洁得如同正常天气状态,让自动驾驶汽车看穿积雪路面并安全行驶。
 
自动驾驶汽车
 
同时,在软件算法上,尽量扩大样本采集容量,包含到恶劣天气下不同路况的数据,通过深度学习等来提高系统精确度。
 
此外,很多厂商所提出的用深度学习方案来进行感知识别等技术,依然处于早期阶段,未来仍需要解决大型数据集、算法运算能力、以及如何在短时间内处理大量数据以及识别准确度的问题。

 

文章转载请保留原文网址:http://www.itas-hk.com/news/cjwt/520.html


上一篇:汽车大尺寸中控屏幕真的很有必要吗?

下一篇:全液晶仪表盘,只是用液晶屏替代机械仪表那么简单吗?


液晶仪表 返回列表